Acta Crystallographica Section E

Structure Reports

Online

Pentacarbonyl(tetraphenyldiphosphine monosulfide-P)chromium(0)

ISSN 1600-5368

Peter G. Jones,* Axel K. Fischer, Michael Farkens and Reinhard Schmutzler

Institut für Anorganische und Analytische
Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail:
jones@xray36.anchem.nat.tu-bs.de

Key indicators

Single-crystal X-ray study
$T=178 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.040$
$w R$ factor $=0.108$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\left[\mathrm{Cr}\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{P}_{2} \mathrm{~S}\right)(\mathrm{CO})_{5}\right]$, the key bond lengths are $\mathrm{P} 1-\mathrm{P} 22.2659$ (15), P2-S 1.9531 (15), P1-C 1.830, 1.833 (3), $\mathrm{P} 2-\mathrm{C} \quad 1.821, \quad 1.822$ (3) and $\mathrm{P} 1-\mathrm{Cr}$ 2.3921 (13) \AA. The conformation about the $\mathrm{P}-\mathrm{P}$ bond is defined by the torsion angle $\mathrm{S}-\mathrm{P} 2-\mathrm{P} 1-\mathrm{Cr}$ of $-58.60(7)^{\circ}$.

Comment

The title compound, (I), arose during studies (see Experimental) of thioureas substituted with phosphorus-containing groups (Farkens, 1991). It was characterized by this structure determination.

(I)

The molecular structure of (I) is shown in Fig. 1. A search of the Cambridge Structural Database (CSD, Version of April 2002; Allen \& Kennard, 1993) revealed no other complexes of any tetra(organyl)diphosphine monosulfide (in the strict sense of a compound containing a $\mathrm{P}-\mathrm{P}$ bond). The key bond lengths are $\mathrm{P} 1-\mathrm{P} 22.2659$ (15), $\mathrm{P} 2-\mathrm{S} 1.9531$ (15), P1-C 1.830, 1.833 (3) and P2-C 1.821 1.822 (3) A. These may be compared, although the two systems clearly differ chemically in many respects, with values for uncomplexed tetramethyldiphosphane monosulfide (Gruber et al., 1990): P-P 2.201 (1), $\mathrm{P}-\mathrm{S} 1.970$ (1), $\mathrm{P}^{\text {III }}-\mathrm{C} 1.830$ and 1.834 (1), and $\mathrm{P}(\mathrm{S})-\mathrm{C} 1.803$ and 1.803 (1) \AA. The $\mathrm{P}-\mathrm{P}$ bond in (I) may be regarded as long, and it is reasonable to propose steric effects as the cause. A CSD search revealed 57 structures with $(\mathrm{C})_{2} \mathrm{P}-\mathrm{P}(\mathrm{C})_{2}$ single bonds, involving 69 bonds in the range 2.104-2.310 \AA (average 2.216 Å).

The $\mathrm{P}-\mathrm{Cr}$ distance is 2.3921 (13) \AA, and the $\mathrm{Cr}-\mathrm{C}$ bond trans to $\mathrm{Cr}-\mathrm{P}$ is by far the shortest, at 1.865 (4) $\AA, c f$. average $1.903 \AA$ for the other four $\mathrm{Cr}-\mathrm{C}$ bonds. The conformation about the $\mathrm{P}-\mathrm{P}$ bond is defined by the torsion angle $\mathrm{S}-\mathrm{P} 2-$ $\mathrm{P} 1-\mathrm{Cr}$ of $-58.60(7)^{\circ}$ (in the above-mentioned diphosphine monosulfide, the S atom is trans to the lone pair at the other phosphorus). As expected, the largest angles at phosphorus are those involving the Cr atom at P 1 and the S atom at P 2 .

Two short H $\cdots \mathrm{O}$ contacts could reasonably be interpreted as weak hydrogen bonds (Table 2).

Experimental

The reaction between (norbornadiene) $\mathrm{Cr}(\mathrm{CO})_{4}$ and N, N^{\prime}-bis(diphenylphosphino) $-N, N^{\prime}$-dimethylthiourea in dichloromethane led to

Figure 1
The molecule of compound (I) in the crystal. Displacement ellipsoids represent 30% probability levels. H-atom radii are arbitrary.
a complex mixture of products. The mixture was dissolved in diethyl ether, from which the title compound crystallized in 13% yield (Farkens, 1991). The decomposition of the thiourea to tetraphenyldiphosphine monosulfide has been observed before in our laboratory (Gruber, 1989).

Crystal data

$\left[\mathrm{Cr}\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{P}_{2} \mathrm{~S}\right)(\mathrm{CO})_{5}\right]$
$M_{r}=594.45$
Triclinic, $P \overline{1}$
$a=9.840$ (3) A
$b=10.089$ (5) \AA
$c=14.967$ (6) \AA
$\alpha=77.90(3)^{\circ}$
$\beta=84.43$ (3) ${ }^{\circ}$
$\gamma=68.02(3)^{\circ}$
$V=1347.0(10) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.466 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 50 reflections
$\theta=10-11.5^{\circ}$
$\mu=0.66 \mathrm{~mm}^{-1}$
$T=178$ (2) K
Tablet, yellow
$0.5 \times 0.5 \times 0.2 \mathrm{~mm}$

Data collection

Nicolet $R 3$ diffractometer
ω scans
Absorption correction: ψ scan (XEMP; Nicolet, 1987)
$T_{\text {min }}=0.801, T_{\text {max }}=0.991$
5120 measured reflections
4578 independent reflections
3476 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.038 \\
& \theta_{\max }=25.1^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-11 \rightarrow 11 \\
& l=-12 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 147 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.108$
$S=1.03$
4578 reflections
343 parameters
Hydomparameters constrained

Table 1
Selected geometric parameters $\left(\mathrm{A}^{\circ},^{\circ}\right)$.

$\mathrm{Cr}-\mathrm{C} 27$	$1.865(4)$	$\mathrm{S}-\mathrm{P} 2$	$1.9531(15)$
$\mathrm{Cr}-\mathrm{C} 25$	$1.893(4)$	$\mathrm{P} 1-\mathrm{C} 1$	$1.830(3)$
$\mathrm{Cr}-\mathrm{C} 28$	$1.895(4)$	$\mathrm{P} 1-\mathrm{C} 7$	$1.833(3)$
$\mathrm{Cr}-\mathrm{C} 26$	$1.909(4)$	$\mathrm{P} 1-\mathrm{P} 2$	$2.2659(15)$
$\mathrm{Cr}-\mathrm{C} 29$	$1.916(4)$	$\mathrm{P} 2-\mathrm{C} 13$	$1.821(3)$
$\mathrm{Cr}-\mathrm{P} 1$	$2.3921(13)$	$\mathrm{P} 2-\mathrm{C} 19$	$1.822(3)$
$\mathrm{C} 27-\mathrm{Cr}-\mathrm{C} 25$	$88.48(15)$	$\mathrm{C} 29-\mathrm{Cr}-\mathrm{P} 1$	$95.75(11)$
$\mathrm{C} 27-\mathrm{Cr}-\mathrm{C} 28$	$88.55(15)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 7$	$103.54(14)$
$\mathrm{C} 2-\mathrm{Cr}-\mathrm{C} 28$	$87.44(15)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{P} 2$	$101.21(10)$
$\mathrm{C} 27-\mathrm{Cr}-\mathrm{C} 26$	$89.65(15)$	$\mathrm{C} 7-\mathrm{P} 1-\mathrm{P} 2$	$104.56(10)$
$\mathrm{C} 25-\mathrm{Cr}-\mathrm{C} 26$	$91.50(15)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{Cr}$	$119.02(11)$
$\mathrm{C} 28-\mathrm{Cr}-\mathrm{C} 26$	$177.94(14)$	$\mathrm{C} 7-\mathrm{P} 1-\mathrm{Cr}$	$110.78(10)$
$\mathrm{C} 27-\mathrm{Cr}-\mathrm{C} 29$	$85.89(15)$	$\mathrm{P} 2-\mathrm{P} 1-\mathrm{Cr}$	$116.02(5)$
$\mathrm{C} 25-\mathrm{Cr}-\mathrm{C} 29$	$173.94(14)$	$\mathrm{C} 13-\mathrm{P} 2-\mathrm{C} 19$	$110.90(14)$
$\mathrm{C} 28-\mathrm{Cr}-\mathrm{C} 29$	$90.19(15)$	$\mathrm{C} 13-\mathrm{P} 2-\mathrm{S}$	$111.01(11)$
$\mathrm{C} 26-\mathrm{Cr}-\mathrm{C} 29$	$90.69(16)$	$\mathrm{C} 19-\mathrm{P} 2-\mathrm{S}$	$111.67(11)$
$\mathrm{C} 27-\mathrm{Cr}-\mathrm{P} 1$	$176.55(11)$	$\mathrm{C} 13-\mathrm{P} 2-\mathrm{P} 1$	$107.35(10)$
$\mathrm{C} 25-\mathrm{Cr}-\mathrm{P} 1$	$89.77(10)$	$\mathrm{C} 19-\mathrm{P} 2-\mathrm{P} 1$	$103.03(11)$
$\mathrm{C} 28-\mathrm{Cr}-\mathrm{P} 1$	$88.40(10)$	$\mathrm{S}-\mathrm{P} 2-\mathrm{P} 1$	$112.55(6)$
$\mathrm{C} 26-\mathrm{Cr}-\mathrm{P} 1$	$93.36(10)$		
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{P} 2-\mathrm{C} 13$	$48.63(15)$	$\mathrm{Cr}-\mathrm{P} 1-\mathrm{P} 2-\mathrm{C} 19$	$61.83(11)$
$\mathrm{C} 7-\mathrm{P} 1-\mathrm{P} 2-\mathrm{C} 13$	$-58.72(15)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{P} 2-\mathrm{S}$	$171.07(11)$
$\mathrm{Cr}-\mathrm{P} 1-\mathrm{P} 2-\mathrm{C} 13$	$178.96(10)$	$\mathrm{C} 7-\mathrm{P} 1-\mathrm{P} 2-\mathrm{S}$	$63.72(11)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{P} 2-\mathrm{C} 19$	$-68.50(15)$	$\mathrm{Cr}-\mathrm{P} 1-\mathrm{P} 2-\mathrm{S}$	$-58.60(7)$
$\mathrm{C} 7-\mathrm{P} 1-\mathrm{P} 2-\mathrm{C} 19$	$-175.85(14)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 22-\mathrm{H} 22 \cdots 2^{\mathrm{i}}$	0.95	2.65	$3.581(4)$	166
$\mathrm{C} 21-\mathrm{H} 21 \cdots 4^{\mathrm{ii}}$	0.95	2.57	$3.426(5)$	149

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1+x, y, z$.
H atoms were included using a riding model with fixed $\mathrm{C}-\mathrm{H}$ bond lengths of $0.95 \AA ; U_{\text {iso }}(\mathrm{H})$ values were fixed at 1.2 times the $U_{\text {eq }}$ of the parent atom.

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. The authors thank Mr A. Weinkauf for technical assistance.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Farkens, M. (1991). Diplomarbeit, Technical University of Braunschweig, Germany.
Gruber, M. (1989). PhD Thesis, Technical University of Braunschweig, Germany.
Gruber, M., Jones, P. G. \& Schmutzler, R. (1990). Chem. Ber. 123, 1313-1317. Nicolet (1987). P3, XDISK and XEMP. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.

